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ABSTRACT fftw_plan plan;

. S COMPLEX A[n], B[n];
FFT literature has been mostly concerned with minimizing th

number of floating-point operations performed by an aldonit /* plan the computation */
Unfortunately, on present-day microprocessors this nreasuar plan = fftw_create_plan(n);

less important than it used to be, and interactions with tlee p - -

cessor pipeline and the memory hierarchy have a larger itnpac /* execute the plan */

on performance. Consequently, one must know the details of a fitw(plan, A);

computer architecture in order to design a fast algorithmthls

paper, we propose an adaptive FFT program that tunes the com- /* the plan can be reused for
putation automatically for any particular hardware. We paned other inputs of size N */
our program, called FFTW, with over 40 implementations @& th fftw(plan, B);

FFT on 7 machines. Our tests show that FFTW'’s self-optingizin

approach usually yields significantly better performarftantall Figure 1: Simplified example of FFTW's use. The user must first
other publicly available software. FFTW also compares fabty create a plan, which can be then used at will.

with machine-specific, vendor-optimized libraries.
similar adaptive techniques could be applied successtolbther

The discrete Fourier transform (DFT) is an important toaiany In FFTW, the computation of the transform is accomplished by
branches of science and engineering [1] and has been stexlied anexecutorthat consists of highly optimized, composable blocks
tensively [2]. For many practical applications, it is imfait to of C code callectodelets A codelet is a specialized piece of code
have an implementation of the DFT that is as fast as possible. that computes part of the transform. The combination of Eide
the past, speed was the direct consequence of clever algsr{2] applied by the executor is specified by a special data steictu

that minimized the number of arithmetic operations. On @nés called aplan. The plan is determined at runtime, before the com-
day general-purpose microprocessors, however, the pesfore putation begins, by plannerwhich uses a dynamic programming
of a program is mostly determined by complicated interanstiof algorithm [4, chapter 16] to find a fast composition of cotiele
the code with the processor pipeline, and by the structuthef  The planner tries to minimize the actuatecution timeand not
memory. Designing for performance under these conditi@as r thenumber of floating point operationsince, as we show in Sec-

quires an intimate knowledge of the computer architecturéhis tion 2, there there is little correlation between these twdq-
paper, we address this problem by means of a naglaptiveap- mance measures. Consequently, the planner measures tireun
proach, where the program itself adapts the computatiometolé- of many plans and selects the fastest. In the current impitane
tails of the hardware. We developed FFTW, an adaptive, hggh p  tion, plans can also be saved to disk and used at a later time.
formance implementation of the Cooley-Tukey fast Fourians- The speed of the executor depends crucially on the efficiency

form (FFT) algorithm [3], written in C. We have compared many of the codelets, but writing and optimizing them is a tediansl
C and Fortran implementations of the DFT on several machines error-prone process. For this reason, we found it converiien

and our experiments show that FFTW typically yields sigaifiity generate the codelets automatically by means of a speaipbpe
better performance than all other publicly available DFfivsare. compiler. FFTW'scodelet generatgrwritten in the Caml Light
More interestingly, while retaining complete portabilisFTW is dialect of the functional language ML [5], is a sophistichf#o-
competitive with or faster than proprietary codes such ass3Rer- gram that first produces a representation of the codeletifficttm

formance Library and IBM's ESSL library that are highly tuhe  of abstract C syntax tree, and then “optimizes” the codefeih
for a single machine. Such encouraging results raise the tiat plying well known transformations such as constant foldamgl
algebraic identities. The main advantages of generatidg eoe
Matteo Frigo was supported in part by the Defense Advanced Re that it is simple to experiment with different algorithmsamding

search Projects Agency (DARPA) under Grant N00014-94-850@nd by ; i
a Digital Equipment Corporation Fellowship. Steven G. Jamwas sup- zgﬁ:ﬁgs;'cirgjde itis easy to produce many long blocks ofikeoto

ported in part by a DoD NDSEG Fellowship, an MIT Karl Taylori@pton o o o
Fellowship, and by the Materials Research Science and Eeditg Center FFTW's internal complexity is not visible to the user, how-
program of the National Science Foundation under award DMB334. ever. The user interacts with FFTW only through the planmer a
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the executor. (See Figure 1.) The codelet generator is remt us
after compile time, and the user does not need to know CarhkLig
or have a Caml Light compiler. FFTW provides a function that
creates a plan for a transform of a specified size, and ongadhe
has been created it can be used as many times as needed.

The FFTW library (currently at version 1.2) is publicly akai
able at our WWW page [6]. FFTW igot a toy system, but a
production-quality library that already enjoys many hiedttr of
users. FFTW performs one- and multidimensional transfoemd
it is not restricted to input sizes that are power220ofA parallel
version of the executor, written in Cilk [7], also exists.

The rest of the paper is organized as follows. In Section 2 we
outline the runtime structure of FFTW, consisting of the@xer
and the planner. In Section 3 we briefly describe the contjite-
structure of FFTW—that is, the codelet generator. In Sectiae
present part of the performance measurements we colleatétyd
the development of FFTW. Finally, in Section 5 we give some
concluding remarks.

2. FFTW’SRUNTIME STRUCTURE

In this section we describe the executor, which is the paffFafw
that actually computes the transform. We also discuss hoiWWFF
builds a plan (a sequence of instructions that specifies pleeas
tion of the executor). Finally, we present evidence that ST
adaptive architecture is a good idea.

The executor implements the Cooley-Tukey FFT algorithm
[3], which centers around factoring the si2é of the transform
into N = N; N,. The algorithm recursively computés; trans-
forms of sizeN,, multiplies the results by certain constants tradi-
tionally calledtwiddle factors and finally compute#V, transforms
of size N;. The executor consists of a C function that implements
the algorithm just outlined, and of a library obdeletshat imple-
ment special cases of the Cooley-Tukey algorithm. Spetifica
codelets come in two flavorg\lormal codelets compute the DFT
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Figure 2. Speeds vs. flops of various plans considered by the
planner forN = 32768. The units of speed (“MFLOPS”) and the
machine are described in Section 4. Notice that the fastestip
not the one that performs the fewest operations.

have not yet determined experimentally the relative achged of
the loop-based and recursive approaches, however. Sirookeiet
performs a significant amount of work, the overhead of theirec
sion is negligible. Moreover, recursion is easier to codz a@lows
codelets to perform a well defined task that is independettef
context in which the codelet is used.

How does one construct a good plan? FFTW's strategy is to
measure the execution time of many plans and to select the bes
Ideally, FFTW’splanner should try all possible plans. This ap-
proach, however, is not practical due to the combinatoriple
sion of the number of plans. Instead, the planner uses a dgnam
programming algorithm [4, chapter 16] to prune the searatsp
In order to use dynamic-programming, we assuraptimal sub-
structure[4]: if an optimal plan for a sizéV is known, this plan is
still optimal when sizéV is used as a subproblem of a larger trans-
form. This assumption is in principle false because of tlffexdint

of a fixed size, and are used as the base case for the recursiorstates of the cache in the two cases. In practice, we trield bot

Twiddlecodelets are like normal codelets, but in addition they mul-
tiply their input by the twiddle factors. Twiddle codeleteaised
for the internal levels of the recursion. The current FFT\'éase
contains codelets for all the integers upltoand all the powers of

2 up to64, covering a wide spectrum of practical applications.

approaches and the simplifying hypothesis yielded goadtes

In order to demonstrate the importance of the planner, ak wel
as the difficulty of predicting the optimal plan, in Figure 2 ehow
the speed of various plans (measured and reported as inSdti
as a function of the number of floating point operations (fjaps

The executor takes as input the array to be transformed, andquired by each plan. (The planner computes an exact count of

also aplan, which is a data structure that specifies the factorization

the operations.) There are two important phenomena thatawe c

of NV as well as which codelets should be used. For example, hereppserve in this graph. First, different compositions of theelets

is a high-level description of a possible plan for a transfaf
lengthV = 128:

DIVIDE-AND-CONQUER(128, 4)
DIVIDE-AND-CONQUER(32, 8)
SOLVE(4)

In response to this plan, the executor initially computesans-
forms of size32 recursively, and then uses the twiddle codelet of
size 4 to combine the results of the subproblems.
way, the problems of siz&2 are divided inta8 problems of sizd,
which are solved directly using a normal codelet (as spetiie
the last line of the plan) and are then combined using a&tred-
dle codelet.

The executor works by explicit recursion, in contrast whib t
traditional loop-based implementations [1, page 608]. Wease
an explicitly recursive implementation because of thécatev-
idence that divide-and-conquer algorithms improve lagdi8].

In the same

result in a wide range of performance, and it is importantinase
the right combination. Second, the total number of flops aslax
quate as a predictor of the execution time, at least for tlagively
small variations in the flops that obtain for a givah

We have found that the optimal plan depends heavily on the
processor, the memory architecture, and the compiler. ¥ame
ple, for double-precision complex transfornts, = 1024 is fac-
tored into1024 = 8 - 8 - 16 on an UltraSPARC and intb024 =
32 - 32 on an Alpha. We currently have no theory that predicts the
optimal plan, other than some heuristic rules of the forndixaX
seems to work best on machime”

3. THE CODELET GENERATOR

In this section we describe the codelet generator, whictyres
optimized fragments of C code (“codelets”) specialized ame
pute the transform of a fixed size. In the limited space abkela

For example, as soon as a subproblem fits into the cache, ho furwe shall try to give the reader a flavor of how the generatorksor

ther cache misses are needed in order to solve that subprote

and why such a tool is important.
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let simplify_times = fun
(Real a) (Real b) -> (Real (a *
| (Real a) b ->
if (almost_equal a 0.0)
then (Real 0.0)
else if (almost_equal a 1.0) then b
else if (almost_equal a (-1.0))
then simplify (Uminus b)
else Times ((Real a), b)

b))

Figure 3: Example of the rules that constitute the optimizer. The
function shown in the figure simplifies the product of two tast

If both factors are real numbers, the optimizer replacestib#i-
plication by a single real number. Multiplications by carss can
be simplified when the constant(is1 or —1. The actual generator
contains other rules that are not shown here.

The codelet generator accepts as input an intdgend pro-
duces a normal or a twiddle codelet that computes the Fourier
transform of sizeV (either the forward or backward transform).
The generator is written in the Caml Light dialect of ML [5]ag
is an applicative, polymorphic, and strongly typed funatiblan-
guage with first-class functions, algebraic data types, @itérn
matching.

The generator operates on a subset of the abstract synéax tre
(AST) of the C language. First, the generator produces an AST
for a naive program that computes the transform. Then,pliep
local optimizations to the AST in order to improve the pragra
Finally, it unparses the AST to produce the desired C code.

. .5
The AST generation phase creates a crude AST for the desired

codelet. This AST contains some useless code, such as lnultip
cations by0 and1, but the code is polished by the following opti-
mization phase. The current version of the AST generatotatos
knowledge of many DFT algorithms, including Cooley-Tukey (
the form presented in [1, page 611]), a prime factor algoritas
described in [1, page 619]), a split-radix algorithm [2]ddRader’s
algorithm for transforms of prime length [9]. Our first imphen-
tation of the Cooley-Tukey AST generator consisted of 6@din
of Caml code. The prime factor and split-radix algorithmseve
added using about 20 additional lines of code each. (To avoid
confusion, it is worth remarking that thendelet generatouses
a variety of algorithms for producing codelets, but #sescutor
is currently only capable of composing codelets accordinthé
Cooley-Tukey algorithm.)

The AST generator builds the syntax tree recursively. At any
stage of the recursion, several algorithms are applicalnid,it is

with [cc|f77] -native -fast -xO5 -dalign
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Figure 4: Comparison of double precision 1D complex

FFTs on a Sun HPC 5000 (167MHz UltraSPARC-I). Compiled
. SunOS
.5.1, Sun WorkShop Compilers version 4.2.

Most simplifying rules are obvious, such ag + 0 = a”,
but other rules are more subtle. For example, because ofted u

trigonometric identities, a codelet contains many floaoint con-

stant coefficienta that come paired with-a. We found that a rule
making all constants positive, propagating the minus sigoml-
ingly, typically yielded a speed improvement of about 10%15
because floating-point constants are typically not parhefgro-
gram code, but are loaded from memory. If the same constant ap
pears twice in a C program, the compiler recycles the first orgm
load.

We believe that tools like our codelet generator will become
increasingly important as processors grow more and more com
plex and their performance becomes, practically speakingre-
dictable. While in principle itis always possible to write assem-
bly program that is faster than the program generated automa
cally, in practice this option is seldom viable. For examplETW

not clear which one should be used. The AST generator choosesends to use high radices (such32sor 64) on processors with a

the algorithm that minimizes a certain cost function whiepends
on the arithmetic complexity of the codelet and its memoaj-tr
fic. Experimentally, we achieved the best results by miningjz
the functiondv + f, wherew is the number of stack variables gen-
erated, andf is the number of floating-point operations. (The co-
efficient4 is not critical.) This choice of the cost function yielded
a typical improvement of abo@0% over our first generator that
just implemented radix-2 Cooley-Tukey. Typically withgHunc-
tion, if the prime factor algorithm is not applicable, thengeator
tends to use a radix/N Cooley-Tukey algorithm.

The optimizer transforms a raw AST into an equivalent one
that executes much faster. The optimizer consists of a geles
that are applied locally to all nodes of the AST. A fragmenthaf
optimizer appears in Figure 3. The example shows that therpat
matching features of Caml are useful for writing the optieniz

rich set of registers. The codelet of st containsd28 additions,
248 multiplications, andi 56 stack variables. Hand-coding such a
subroutine correctly would be a formidable task even forttoest
talented programmer. Instead, not only does the generaidupe
the correct code automatically, but it also allows hackhisasthe
propagation of the minus sign to be implemented with justua co
ple of lines of code. Moreover, as we briefly mentioned eariie
is not cleara priori which algorithm and coding style will lead to
the best performance. Using the generator, however, we atsee
to produce code quickly and experiment with new ideas.

4. PERFORMANCE RESULTS

We have compared FFTW with over 40 other complex FFT im-
plementations on 7 platforms, but due to space constraiatsan
only present a small, characteristic selection of that bata. (For
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more results, see [6].) In Figure 4, the performance is shown [4]
for the 8 fastest codes on an UltraSPARC, along with that of 4
other interesting or well-known programs. Speed is meakiire
“MFLOPS,” defined for a transform of siz& as(5N log, N)t, (8]
wheret is the time inus (see [10, page 45]). The codes are listed
in the legend under the author’'s name (or by program name if it
is more well-known), and are sorted by average relativegperf (6]
mance. They include the Sun Performance Library version 1.2
(SUNPERF); public-domain code by T. Ooura (Fortran, 1996), (7]
J. Green (C, 1996), and R. H. Krukar (C, 1990); the Fortran-FFT
PACK library [11]; a Fortran split-radix FFT by Sorensen J12
Fortran FFT by Singleton [13]; Temperton’s Fortran GPFA&od
[14]; Bailey’s “4-step” FFT implementation [15]; Sitton@FT
code [16]; and théourl routine from [17] (NRF).
- . (8]

We get similar numbers on other machines. For example,
on an IBM RS/6000, FFTW ranges frob5% faster than IBM’s
ESSL library forN = 64, to 12% slower forV = 16384, to again
7% faster forN = 131072.

9]
5. CONCLUSION

We believe computer architectures have become so compdgx th
manually optimizing software is difficult to the point of imgzti- [10]
cality. Our FFTW system is a method of dealing with such com-
plexity. Similar ideas have been incorporated by otherargeers [11]
[18] into an interesting system called EXTENT which usesra te
sor product framework to synthesize Fortran FFTs for medides- [12]
sors. Like FFTW, EXTENT generates code optimized for speed,
but unlike FFTW, the generated program only works for onagra
form size. The idea of using ML as a metalanguage for generat-
ing C applications first appeared, to the best of our knovdedy (13]
[19]. Other automatic systems for the generation of FFT maog
include [20], which describes the generation of FFT progréon
prime sizes. [21] presents a generator of Pascal programpleim
menting a prime factor FFT algorithm. Johnson and Burrug [22
applied dynamic programming to the design of optimal DFT mod
ules. These systems all try to minimize the arithmetic caxip}
of the transform rather than its execution time.

Adaptive techniques such as the ones we have used appealr16]
very attractive, but much work remains to be done. The execu-
tor should be extended to use other DFT algorithms (primefac
split-radix). Currently, the development of an FFTW-likestem [17]
requires knowledge about programming languages and cerapil
We plan to develop a system for program generation that could
also be used by people with no specific competence in theds.fiel [18]
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